Get Customer Transaction Aggregations
Get aggregated financial summaries for customer transactions.
Returns categorized spending and income data organized into tables, subtables, and rows with time-series values.
Endpoint: GET https://dev.walkerstdata.com.au/api/v1/customer/{customerId}/transactions/aggregate
Request
- cURL
- JavaScript
- Python
# Get aggregated transaction data for a customer
curl -X GET "https://dev.walkerstdata.com.au/api/v1/customer/f9e8d7c6-b5a4-3210-9876-543210abcdef/transactions/aggregate" \
-H "x-api-key: YOUR_API_KEY"
const customerId = 'f9e8d7c6-b5a4-3210-9876-543210abcdef';
const response = await fetch(`https://dev.walkerstdata.com.au/api/v1/customer/${customerId}/transactions/aggregate`, {
method: 'GET',
headers: {
'x-api-key': 'YOUR_API_KEY',
},
});
const result = await response.json();
const aggregatedData = result.data.tables;
import requests
customer_id = 'f9e8d7c6-b5a4-3210-9876-543210abcdef'
response = requests.get(
f'https://dev.walkerstdata.com.au/api/v1/customer/{customer_id}/transactions/aggregate',
headers={'x-api-key': 'YOUR_API_KEY'}
)
result = response.json()
aggregated_data = result['data']['tables']
Response
{
"data": {
"tables": [
{
"id": "income",
"hierarchy": "table",
"type": "objectArray",
"values": [
{
"id": "sales volume",
"hierarchy": "row",
"type": "timeseries",
"values": {
"2025-01": 53512.8,
"2025-02": 1094617.8,
"total": 1435732.86
}
}
]
},
{
"id": "expenses",
"hierarchy": "table",
"type": "objectArray",
"values": [
{
"id": "ffc by type",
"hierarchy": "subtable",
"type": "objectArray",
"values": [
{
"id": "asset-finance",
"hierarchy": "row",
"type": "timeseries",
"values": {
"2025-04": -1145.1,
"total": -1145.1
}
}
]
}
]
}
]
},
"message": null
}
Hierarchy Structure
The aggregation data follows a 3-level hierarchy:
- Table: Top-level categories (income, expenses)
- Subtable: Mid-level groupings within tables
- Row: Individual data series with time-series values
Each level contains:
- id: Identifier for the category
- hierarchy: Level type (table, subtable, row)
- type: Data structure type (objectArray, timeseries)
- values: Either nested objects or time-series data with totals
Time-Series Data
Row-level entries include monthly breakdowns and totals:
- Monthly values:
YYYY-MMformat keys with amounts - Total: Sum across all time periods
- Positive values: Income/credits
- Negative values: Expenses/debits
Use Cases
- Financial dashboards: Display categorized spending summaries
- Cash flow analysis: Track income vs expenses over time
- Business insights: Understand customer financial patterns
- Credit assessment: Evaluate spending behaviors and trends
Next Steps
With aggregated data, you can:
- Build visualizations: Create charts and graphs from time-series data
- Generate reports: Use hierarchical structure for organized summaries
- Export summaries: Combine with download endpoint for file exports